Research Achievements

March 6, 2018  PRESS RELEASE

Metal-free Catalyst Extends the Range of Ester Synthesis

Nagoya University researchers produce valuable esters in high yield using environment-friendly catalyst.

press released on March 6, 2018


Figure 1: TMC catalyst for the trans-esterification

Tetramethylammonium methyl carbonate (TMC) reacts in-situ with an alcohol to form an alkoxide ion, which then attacks the starting ester to give the complex target ester in high yields. © Manabu Hatano & Kazuaki Ishihara


Nagoya, Japan - Esters are among the most important classes of compounds in organic chemistry. Simple esters are known for their pleasant, often fruity aromas. Meanwhile, the larger, more complex examples have a wide spectrum of industrial uses, ranging from lenses and moisturizers to "green" fuel (biodiesel).


A common way to produce complex esters is to react simpler carboxylic esters with alcohols. Known as trans-esterification, this process typically relies on metal salts as catalysts. However, such catalysts tend to be expensive and/or polluting. Worse still, if the ester is long and flexible, it tends to wrap around the metal center through coordination bonds. By effectively tying up the metal, this "chelation" shuts down the reaction.


Now, a team at Nagoya University has developed a catalyst that dramatically expands the substrate range of trans-esterification. To avoid chelation, the researchers used a metal-free catalyst, tetramethylammonium methyl carbonate (TMC) (Figure 1). Under the right conditions, TMC reacts in-situ with an alcohol to form an alkoxide ion, which then attacks the starting ester to give the complex target ester in high yields.


According to Manabu Hatano, co-author of the team's study in Green Chemistry, this is not the first process using alkoxides for trans-esterification, but it is by far the most versatile. "Previous efforts have used phosphonium salts, but the resulting alkoxide can only esterify the solvent itself, which must be dimethyl carbonate (DMC). That's fine if you want a product that can be derived from DMC, but otherwise you need salts that are stable in more conventional solvents. Our new TMC fills that gap."


The scope of alcohols and esters that can be combined using TMC is broad indeed. Amino alcohols can take part, even though the amino group would deactivate typical metal catalysts by chelation. A quinine derivative with a 3D bridged ring on the alcohol side was also constructed. Meanwhile, among ester substrates, the esters of chiral amino acids can be successfully reacted, and the purity of the correct enantiomer is safely preserved. Like earlier phosphonium salts, the new catalyst can also be used to esterify the solvent itself, which saves money when the solvent is en route to the target.


Figure 2. Substrate Scope and Gram Scale Synthesis

The scope of alcohols and esters that can be combined using TMC is broad. For instance, α-tocotrienol (vitamin E) could also be obtained in high yields with the use of TMC in toluene. © Manabu Hatano & Kazuaki Ishihara


"Being both recyclable and free of metals, this catalyst is a genuine example of green chemistry," says lead author Kazuaki Ishihara (Figure 3). "Not only is the process itself green, but we can use it to produce green biodiesel, which is a mixture of esters. We synthesized hundreds of grams of a major biodiesel component, which is quite copious for a laboratory-scale reaction. This gives us confidence that the reaction can be scaled up to industrial production."


Figure 3. Reuse of Catalyst and Gram Scale Synthesis

TMC was recovered and reused four times in 96% yield. © Manabu Hatano & Kazuaki Ishihara




The article, "Metal-free Transesterification Catalyzed by Tetramethylammonium Methyl Carbonate," was published in Green Chemistry at DOI:10.1039/C7GC03858E.



Authors: Associate Prof. Manabu Hatano, Yuji Tabata, Yurika Yoshida, Kohei Toh, Kenji Yamashita, Yoshihiro Ogura and Prof. Kazuaki Ishihara, Graduate School of Engineering, Nagoya University



Related Links:


Media Coverage:


Funding: Financial support was partially provided by JSPS KAKENHI Grant Numbers 17H03054, 15H05755, and JP15H05810 in Precisely Designed Catalysts with Customized Scaffolding.



Archive List