Skip to content

News & Events

Stay informed about research breakthroughs, university announcements, and opportunities to engage with Nagoya University's dynamic global community.

Admissions

Study in Japan's fourth largest city, and home to some of its most well-known companies—all without the Tokyo prices and Kyoto crowds.

Academics

Pursue your interests through one of our English or Japanese language programs, selecting from a wide variety of specialized fields.

Campus life

Find out about our facilities, comprehensive support, extracurricular activities, and the safe and welcoming community that fosters lifelong connections and growth.

About

Meet our leadership and discover the inclusive values and academic heritage that drive Nagoya University's contributions to knowledge and society.

Human Selection Pressure on Novel Peptide Aided Domestication of Asian Rice

International research team led by Nagoya University identifies peptide required for awn development in wild rice, and shows that human selection caused its dysfunction in cultivated Asian rice.

press released on August 10, 2016

Caption: Upper: Awned line (GLSL25), Lower: Awnless cultivar (Koshihikari). The cultivated rice which is awnless is easily damaged from sparrows or other animals' predation. Awn works as barrier from seed predation under natural condition. © Kanako Bessho-Uehara

Nagoya, Japan – During cultivation of wild cereals such as rice for human agricultural use, a number of domestication-related traits have been selected for over time. These include an upright growth habit, the ability of the plant to keep its seed when ripe rather than dispersing it, and a lack of awns, which are bristles that grow from grass ears. Both Asian and African cultivated rice species share these traits despite their geographical isolation from each other. This suggests the traits’ usefulness in promoting agriculture. Indeed, awnlessness aids planting, harvesting, and storage of seeds. It was recently shown that awn development has been lost through human selection on sets of genes that differ between Asian and African rice. However, the mechanism underlying this process was unclear. An international research team has now identified a signal peptide expressed at the rice spikelet (flower) that is required for awn elongation of rice. Loss of this peptide’s function following genetic mutations is responsible for the awnlessness of cultivated Asian rice. The study was recently reported in PNAS.

The researchers used a genetic mapping technique to identify a region on rice chromosome 8 that appeared responsible for awn elongation in a breeding cross between awnless African and Asian rice parents. Methodical analysis of the region identified the RAE2 gene, which encodes a protein related to plant-specific peptides known to control plant development. The RAE2 peptide was shown to be functional in cultivated African rice but dysfunctional in cultivated Asian rice.

A comparison of amino acid sequences between RAE2 and related peptides from other plants, including awned grasses, revealed six cysteine residues that allow the peptide to form a particular structure. However, the peptide present in awnless Asian rice lacked two cysteine residues. "We compared the DNA sequence of RAE2 in different rice populations, and found a GC-rich region prone to genetic variation that encodes proteins with variable cysteine residues and, consequently, different lengths," first author Kanako Bessho-Uehara says. "This variation disrupts the protein function and leads to awnlessness in Asian rice, but not African rice." Awnlessness in latter involves another gene, RAE3.

The processing enzyme SLP1 cleaves the immature RAE2 peptide in the rice spikelet to promote awn elongation. "We speculate that RAE2 binds a receptor to mediate awn elongation, and that it may also induce development of vascular bundles," corresponding author Motoyuki Ashikari says. "Our findings show that the awn can be used to view the role of human selection in early agriculture and cereal domestication."


The article, "Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice" was published in PNAS at DOI:10.1073/pnas.1604849113


Authors

Kanako Bessho-Uehara(graduate student) and Professor Motoyuki Ashikari, Bioscience and Biotechnology Center, Nagoya University, and their International Research Group including Cornall University, Fukui Prefectural University, ITbM, National Institute of Agrobiological Science and Kyushu University.

Related Links

Ashikari Lab., Laboratory of Molecular Biosystem, Bioscience and Biotechnology Center, Nagoya University

NU Research, "The WISH project, fighting world hunger" (Mar. 26, 2015)

Media Coverage

EurekAlert!

AlphaGalileo

ResearchSEA

Science Daily

Science Newsline, Biology

Phys.org

Science Codex

Technobahn

SeedQuest

Science 2.0

Health Medicine Network

Archaeology News Network

Asian Scientist

Scienmag

Funding

Japan Society for the Promotion of Science fellowship, the Integrative Graduate Education and Research Program in Green Natural Sciences of Nagoya University, a MEXT Grant-in-Aid for Scientific Research on Innovative Areas(Grant 16H01464), SATREPS by JICA and JST, Core Research for Evolutional Science and Technology by JST, Global Crop Diversity Trust Grant GS12004, and other.

We use cookies
By clicking "Accept Cookies," you agree to the use of cookies to improve your user experience, optimize the site, produce statistics, and interact with social networks.
Our Site Policy