Research Achievements

August 8, 2019 

The role of GABA neurons in the central circadian clock has been discovered

The research team led by Dr. Daisuke Ono and Prof. Akihiro Yamanaka of the Graduate School of Medicine, Nagoya University, collaborating with Prof. Ken-ichi Honma and Prof. Sato Honma of Hokkaido University Graduate School of Medicine, and Prof. Yuchio Yanagawa of Gunma University Graduate School of Medicine revealed that inhibitory neurons (GABAergic neurons) of the central circadian clock in the suprachiasmatic nucleus (SCN) refine circadian output rhythms.

 

Physiology and behavior such as sleep/wakefulness, body temperature, and endocrine functions, exhibit 24-hour oscillations called circadian rhythms. The temporal order of physiology and behavior is regulated by the central circadian clock located in the SCN. Our findings can be developed to understand how the SCN regulates physiological phenomena. Furthermore, it might aid the development of new clinical approaches for a variety of diseases related to the circadian clock. These achievements were published online in Communications Biology on June 21, 2019.

 

This work was supported in part by The Uehara Memorial Foundation, The Nakajima Foundation, GSK Japan Research Grant 2015, Kowa Life Science Foundation, Takeda Science Foundation, Kato Memorial Bioscience Foundation, the Project for Developing Innovation Systems of the MEXT, and Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program, Ministry of Education, Culture, Sports, Science and Technology, Japan and JSPS KAKENHI (No. 15H04679, No. 26860156, No. 15K12763, No. 26290002, No. 15H05872, No. 17H05550, No. 18H02477).

 

Research Background

The temporal order of physiology and behavior in mammals is controlled by the master circadian clock located in the SCN. The SCN generates an endogenous circadian oscillation that entrains a day-night alternation. The SCN is composed of heterogeneous neurons with various neurotransmitters. Of these, an inhibitory neurotransmitter, γ-Amino-Butyric-Acid (GABA) is expressed in almost all SCN neurons; however, its role in circadian physiology is still unclear.

 

Research Results

In the present study, we examined GABA signaling in the SCN using mice lacking vesicular GABA transporter (VGAT-/-) or a GABA synthesizing enzyme, glutamate decarboxylase (GAD65-/-/67-/-). We simultaneously measured circadian rhythms with a bioluminescence reporter for the clock gene product PER2 (PER2::LUC), spontaneous firing, and intracellular calcium (Ca2+) levels for several circadian cycles in cultured SCN slices of perinatal mice. SCN lacking GABA exhibited burst firing throughout a day. The burst firing was associated with an abrupt increase in intracellular Ca2+, which was synchronous throughout the entire SCN slice. By contrast, the circadian PER2 rhythm was essentially kept intact. We also found that SCN-specific VGAT depletion in adult mice deteriorated the circadian behavioral rhythms.

 

Research Summary and Future Perspective

In conclusion, GABA is necessary for suppressing the burst firing of neuronal activity and abrupt increases of intracellular Ca2+ levels but not for the generation and stability of the molecular circadian oscillation in the SCN. The GABA network may refine the circadian firing rhythm to ensure noiseless communications with neurons outside the SCN.

 

Figure: AAV mediated VGAT deficiency in the SCN deteriorates circadian behavioral rhythms

 

 

The article, "GABA in the suprachiasmatic nucleus refines circadian output rhythms in mice" has been published online in Communications Biology at DOI: 10.1038/s42003-019-0483-6

 

Authors: Daisuke Ono1, 2, Ken-ichi Honma3, Yuchio Yanagawa4, Akihiro Yamanaka1, 2, and Sato Honma3

1Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
2Department  of  Neural  Regulation,  Nagoya  University  Graduate  School  of  Medicine,  Nagoya 466-8550, Japan
3Research  and  Education  Center  for  Brain  Science,  Hokkaido  University  Graduate  School  of Medicine, Sapporo, 060-8638, Japan
4Department  of  Genetic  and  Behavioral  Neuroscience,  Gunma  University  Graduate  School  of Medicine, Maebashi, Gunma, Japan

Media Coverage

EurekAlert!

SCIENMAG

Science Codex

Scienstack

 

Archive List
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013